At-Risk Students Prediction Using Machine Learning
| dc.contributor.advisor | Duffany, Jeffrey | |
| dc.contributor.author | Ledain Gentillon, Reginald | |
| dc.date.accessioned | 2022-10-28T14:56:18Z | |
| dc.date.available | 2022-10-28T14:56:18Z | |
| dc.date.issued | 2022 | |
| dc.description | Volumen 21, Número 2, 2022 | en_US |
| dc.description.abstract | This article intends to discover how machine learning can be used to predict at-risk students during the school year. Different algorithms were tested within a common framework to compare their accuracy and their interpretability. Using some education expert knowledge, we examined each model relevance in relation to the most important features they used. Attendance, language proficiency and interim test completion were found to be very deterministic in the models prediction capabilities; not a surprise but a validation of the adequacy of the technology for this difficult task. | en_US |
| dc.identifier.citation | Ledain Gentillon, R. & Duffany, J. (2022). At-Risk Students Prediction Using Machine Learning. Politechne, 21(2), 28-32. | en_US |
| dc.identifier.uri | http://hdl.handle.net/20.500.12475/1748 | |
| dc.language.iso | en | en_US |
| dc.publisher | Polytechnic University of Puerto Rico | en_US |
| dc.relation.haspart | San Juan | en_US |
| dc.relation.ispartof | Revista Politechne; | |
| dc.relation.ispartofseries | Revista Politechne: Ingeniería; | |
| dc.rights.holder | Esta Junta Editorial y la Universidad Politécnica de Puerto Rico hacen constar y reconoce que los autores de los artículos, obras literarias y artísticas publicadas en esta Revista Politechnê, se reservan enteramente los derechos de autor y de publicación de los mismos para los efectos de cualquier eventualidad literaria, publicitaria o de cualquier índole. | en_US |
| dc.rights.license | All rights reserved | en_US |
| dc.subject.lcsh | Machine learning | en_US |
| dc.subject.lcsh | Prediction of scholastic success | en_US |
| dc.subject.lcsh | Polytechnic University of Puerto Rico--Graduate students--Research | en_US |
| dc.title | At-Risk Students Prediction Using Machine Learning | en_US |
| dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PUPR_SJU_CEAH_Publicaciones_Revista Politechne_Vol21_Num02_2022_P28-P32_Reginald Ledain Gentifion_Article.pdf
- Size:
- 1.9 MB
- Format:
- Adobe Portable Document Format
- Description:
- PUPR_SJU_CEAH_Publicaciones_Revista Politechne_Vol21_Num02_2022_P28-P32_Reginald Ledain Gentifion_Article
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: