At-Risk Students Prediction Using Machine Learning

dc.contributor.advisorDuffany, Jeffrey
dc.contributor.authorLedain Gentillon, Reginald
dc.date.accessioned2022-10-28T14:56:18Z
dc.date.available2022-10-28T14:56:18Z
dc.date.issued2022
dc.descriptionVolumen 21, Número 2, 2022en_US
dc.description.abstractThis article intends to discover how machine learning can be used to predict at-risk students during the school year. Different algorithms were tested within a common framework to compare their accuracy and their interpretability. Using some education expert knowledge, we examined each model relevance in relation to the most important features they used. Attendance, language proficiency and interim test completion were found to be very deterministic in the models prediction capabilities; not a surprise but a validation of the adequacy of the technology for this difficult task.en_US
dc.identifier.citationLedain Gentillon, R. & Duffany, J. (2022). At-Risk Students Prediction Using Machine Learning. Politechne, 21(2), 28-32.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12475/1748
dc.language.isoenen_US
dc.publisherPolytechnic University of Puerto Ricoen_US
dc.relation.haspartSan Juanen_US
dc.relation.ispartofRevista Politechne;
dc.relation.ispartofseriesRevista Politechne: Ingeniería;
dc.rights.holderEsta Junta Editorial y la Universidad Politécnica de Puerto Rico hacen constar y reconoce que los autores de los artículos, obras literarias y artísticas publicadas en esta Revista Politechnê, se reservan enteramente los derechos de autor y de publicación de los mismos para los efectos de cualquier eventualidad literaria, publicitaria o de cualquier índole.en_US
dc.rights.licenseAll rights reserveden_US
dc.subject.lcshMachine learningen_US
dc.subject.lcshPrediction of scholastic successen_US
dc.subject.lcshPolytechnic University of Puerto Rico--Graduate students--Researchen_US
dc.titleAt-Risk Students Prediction Using Machine Learningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PUPR_SJU_CEAH_Publicaciones_Revista Politechne_Vol21_Num02_2022_P28-P32_Reginald Ledain Gentifion_Article.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format
Description:
PUPR_SJU_CEAH_Publicaciones_Revista Politechne_Vol21_Num02_2022_P28-P32_Reginald Ledain Gentifion_Article

License bundle

Now showing 1 - 1 of 1
License Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: